\(\int \frac {1}{(c e+d e x)^4 (a+b (c+d x)^3)^2} \, dx\) [2901]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 92 \[ \int \frac {1}{(c e+d e x)^4 \left (a+b (c+d x)^3\right )^2} \, dx=-\frac {1}{3 a^2 d e^4 (c+d x)^3}-\frac {b}{3 a^2 d e^4 \left (a+b (c+d x)^3\right )}-\frac {2 b \log (c+d x)}{a^3 d e^4}+\frac {2 b \log \left (a+b (c+d x)^3\right )}{3 a^3 d e^4} \]

[Out]

-1/3/a^2/d/e^4/(d*x+c)^3-1/3*b/a^2/d/e^4/(a+b*(d*x+c)^3)-2*b*ln(d*x+c)/a^3/d/e^4+2/3*b*ln(a+b*(d*x+c)^3)/a^3/d
/e^4

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {379, 272, 46} \[ \int \frac {1}{(c e+d e x)^4 \left (a+b (c+d x)^3\right )^2} \, dx=-\frac {2 b \log (c+d x)}{a^3 d e^4}+\frac {2 b \log \left (a+b (c+d x)^3\right )}{3 a^3 d e^4}-\frac {b}{3 a^2 d e^4 \left (a+b (c+d x)^3\right )}-\frac {1}{3 a^2 d e^4 (c+d x)^3} \]

[In]

Int[1/((c*e + d*e*x)^4*(a + b*(c + d*x)^3)^2),x]

[Out]

-1/3*1/(a^2*d*e^4*(c + d*x)^3) - b/(3*a^2*d*e^4*(a + b*(c + d*x)^3)) - (2*b*Log[c + d*x])/(a^3*d*e^4) + (2*b*L
og[a + b*(c + d*x)^3])/(3*a^3*d*e^4)

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 379

Int[(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m), Subst[Int[x^m
*(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, m, n, p}, x] && LinearPairQ[u, v, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{x^4 \left (a+b x^3\right )^2} \, dx,x,c+d x\right )}{d e^4} \\ & = \frac {\text {Subst}\left (\int \frac {1}{x^2 (a+b x)^2} \, dx,x,(c+d x)^3\right )}{3 d e^4} \\ & = \frac {\text {Subst}\left (\int \left (\frac {1}{a^2 x^2}-\frac {2 b}{a^3 x}+\frac {b^2}{a^2 (a+b x)^2}+\frac {2 b^2}{a^3 (a+b x)}\right ) \, dx,x,(c+d x)^3\right )}{3 d e^4} \\ & = -\frac {1}{3 a^2 d e^4 (c+d x)^3}-\frac {b}{3 a^2 d e^4 \left (a+b (c+d x)^3\right )}-\frac {2 b \log (c+d x)}{a^3 d e^4}+\frac {2 b \log \left (a+b (c+d x)^3\right )}{3 a^3 d e^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.68 \[ \int \frac {1}{(c e+d e x)^4 \left (a+b (c+d x)^3\right )^2} \, dx=-\frac {a \left (\frac {1}{(c+d x)^3}+\frac {b}{a+b (c+d x)^3}\right )+6 b \log (c+d x)-2 b \log \left (a+b (c+d x)^3\right )}{3 a^3 d e^4} \]

[In]

Integrate[1/((c*e + d*e*x)^4*(a + b*(c + d*x)^3)^2),x]

[Out]

-1/3*(a*((c + d*x)^(-3) + b/(a + b*(c + d*x)^3)) + 6*b*Log[c + d*x] - 2*b*Log[a + b*(c + d*x)^3])/(a^3*d*e^4)

Maple [A] (verified)

Time = 4.08 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.41

method result size
default \(\frac {-\frac {1}{3 a^{2} d \left (d x +c \right )^{3}}-\frac {2 b \ln \left (d x +c \right )}{a^{3} d}+\frac {b^{2} \left (-\frac {a}{3 d b \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}+\frac {2 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}{3 b d}\right )}{a^{3}}}{e^{4}}\) \(130\)
risch \(\frac {-\frac {2 b \,d^{2} x^{3}}{3 a^{2}}-\frac {2 b c d \,x^{2}}{a^{2}}-\frac {2 b x \,c^{2}}{a^{2}}-\frac {2 c^{3} b +a}{3 d \,a^{2}}}{e^{4} \left (d x +c \right )^{3} \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}-\frac {2 b \ln \left (d x +c \right )}{a^{3} d \,e^{4}}+\frac {2 b \ln \left (-b \,d^{3} x^{3}-3 b c \,d^{2} x^{2}-3 b \,c^{2} d x -c^{3} b -a \right )}{3 a^{3} e^{4} d}\) \(166\)
norman \(\frac {-\frac {2 c b d \,x^{2}}{a^{2} e}-\frac {2 c^{2} b x}{a^{2} e}+\frac {-2 b^{2} c^{3} d^{5}-a b \,d^{5}}{3 a^{2} d^{6} e b}-\frac {2 b \,d^{2} x^{3}}{3 a^{2} e}}{e^{3} \left (d x +c \right )^{3} \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}-\frac {2 b \ln \left (d x +c \right )}{a^{3} d \,e^{4}}+\frac {2 b \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}{3 a^{3} e^{4} d}\) \(188\)
parallelrisch \(\frac {-a^{2} b \,d^{5}-18 \ln \left (d x +c \right ) x^{2} a \,b^{2} c \,d^{7}+6 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{2} a \,b^{2} c \,d^{7}-18 \ln \left (d x +c \right ) x a \,b^{2} c^{2} d^{6}+6 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x a \,b^{2} c^{2} d^{6}-2 a \,b^{2} c^{3} d^{5}-6 x^{2} a \,b^{2} c \,d^{7}-6 x a \,b^{2} c^{2} d^{6}-36 \ln \left (d x +c \right ) x^{5} b^{3} c \,d^{10}+12 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{5} b^{3} c \,d^{10}-90 \ln \left (d x +c \right ) x^{4} b^{3} c^{2} d^{9}+30 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{4} b^{3} c^{2} d^{9}-120 \ln \left (d x +c \right ) x^{3} b^{3} c^{3} d^{8}+40 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{3} b^{3} c^{3} d^{8}-90 \ln \left (d x +c \right ) x^{2} b^{3} c^{4} d^{7}+30 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{2} b^{3} c^{4} d^{7}-36 \ln \left (d x +c \right ) x \,b^{3} c^{5} d^{6}+12 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x \,b^{3} c^{5} d^{6}-6 \ln \left (d x +c \right ) x^{3} a \,b^{2} d^{8}+2 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{3} a \,b^{2} d^{8}-6 \ln \left (d x +c \right ) a \,b^{2} c^{3} d^{5}+2 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) a \,b^{2} c^{3} d^{5}-2 x^{3} a \,b^{2} d^{8}-6 \ln \left (d x +c \right ) x^{6} b^{3} d^{11}+2 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) x^{6} b^{3} d^{11}-6 \ln \left (d x +c \right ) b^{3} c^{6} d^{5}+2 \ln \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right ) b^{3} c^{6} d^{5}}{3 a^{3} b \,d^{6} e^{4} \left (d x +c \right )^{3} \left (b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a \right )}\) \(833\)

[In]

int(1/(d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x,method=_RETURNVERBOSE)

[Out]

1/e^4*(-1/3/a^2/d/(d*x+c)^3-2*b*ln(d*x+c)/a^3/d+b^2/a^3*(-1/3*a/d/b/(b*d^3*x^3+3*b*c*d^2*x^2+3*b*c^2*d*x+b*c^3
+a)+2/3/b/d*ln(b*d^3*x^3+3*b*c*d^2*x^2+3*b*c^2*d*x+b*c^3+a)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 452 vs. \(2 (86) = 172\).

Time = 0.28 (sec) , antiderivative size = 452, normalized size of antiderivative = 4.91 \[ \int \frac {1}{(c e+d e x)^4 \left (a+b (c+d x)^3\right )^2} \, dx=-\frac {2 \, a b d^{3} x^{3} + 6 \, a b c d^{2} x^{2} + 6 \, a b c^{2} d x + 2 \, a b c^{3} + a^{2} - 2 \, {\left (b^{2} d^{6} x^{6} + 6 \, b^{2} c d^{5} x^{5} + 15 \, b^{2} c^{2} d^{4} x^{4} + b^{2} c^{6} + {\left (20 \, b^{2} c^{3} + a b\right )} d^{3} x^{3} + a b c^{3} + 3 \, {\left (5 \, b^{2} c^{4} + a b c\right )} d^{2} x^{2} + 3 \, {\left (2 \, b^{2} c^{5} + a b c^{2}\right )} d x\right )} \log \left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right ) + 6 \, {\left (b^{2} d^{6} x^{6} + 6 \, b^{2} c d^{5} x^{5} + 15 \, b^{2} c^{2} d^{4} x^{4} + b^{2} c^{6} + {\left (20 \, b^{2} c^{3} + a b\right )} d^{3} x^{3} + a b c^{3} + 3 \, {\left (5 \, b^{2} c^{4} + a b c\right )} d^{2} x^{2} + 3 \, {\left (2 \, b^{2} c^{5} + a b c^{2}\right )} d x\right )} \log \left (d x + c\right )}{3 \, {\left (a^{3} b d^{7} e^{4} x^{6} + 6 \, a^{3} b c d^{6} e^{4} x^{5} + 15 \, a^{3} b c^{2} d^{5} e^{4} x^{4} + {\left (20 \, a^{3} b c^{3} + a^{4}\right )} d^{4} e^{4} x^{3} + 3 \, {\left (5 \, a^{3} b c^{4} + a^{4} c\right )} d^{3} e^{4} x^{2} + 3 \, {\left (2 \, a^{3} b c^{5} + a^{4} c^{2}\right )} d^{2} e^{4} x + {\left (a^{3} b c^{6} + a^{4} c^{3}\right )} d e^{4}\right )}} \]

[In]

integrate(1/(d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="fricas")

[Out]

-1/3*(2*a*b*d^3*x^3 + 6*a*b*c*d^2*x^2 + 6*a*b*c^2*d*x + 2*a*b*c^3 + a^2 - 2*(b^2*d^6*x^6 + 6*b^2*c*d^5*x^5 + 1
5*b^2*c^2*d^4*x^4 + b^2*c^6 + (20*b^2*c^3 + a*b)*d^3*x^3 + a*b*c^3 + 3*(5*b^2*c^4 + a*b*c)*d^2*x^2 + 3*(2*b^2*
c^5 + a*b*c^2)*d*x)*log(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a) + 6*(b^2*d^6*x^6 + 6*b^2*c*d^5*x^
5 + 15*b^2*c^2*d^4*x^4 + b^2*c^6 + (20*b^2*c^3 + a*b)*d^3*x^3 + a*b*c^3 + 3*(5*b^2*c^4 + a*b*c)*d^2*x^2 + 3*(2
*b^2*c^5 + a*b*c^2)*d*x)*log(d*x + c))/(a^3*b*d^7*e^4*x^6 + 6*a^3*b*c*d^6*e^4*x^5 + 15*a^3*b*c^2*d^5*e^4*x^4 +
 (20*a^3*b*c^3 + a^4)*d^4*e^4*x^3 + 3*(5*a^3*b*c^4 + a^4*c)*d^3*e^4*x^2 + 3*(2*a^3*b*c^5 + a^4*c^2)*d^2*e^4*x
+ (a^3*b*c^6 + a^4*c^3)*d*e^4)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 294 vs. \(2 (83) = 166\).

Time = 1.79 (sec) , antiderivative size = 294, normalized size of antiderivative = 3.20 \[ \int \frac {1}{(c e+d e x)^4 \left (a+b (c+d x)^3\right )^2} \, dx=\frac {- a - 2 b c^{3} - 6 b c^{2} d x - 6 b c d^{2} x^{2} - 2 b d^{3} x^{3}}{3 a^{3} c^{3} d e^{4} + 3 a^{2} b c^{6} d e^{4} + 45 a^{2} b c^{2} d^{5} e^{4} x^{4} + 18 a^{2} b c d^{6} e^{4} x^{5} + 3 a^{2} b d^{7} e^{4} x^{6} + x^{3} \cdot \left (3 a^{3} d^{4} e^{4} + 60 a^{2} b c^{3} d^{4} e^{4}\right ) + x^{2} \cdot \left (9 a^{3} c d^{3} e^{4} + 45 a^{2} b c^{4} d^{3} e^{4}\right ) + x \left (9 a^{3} c^{2} d^{2} e^{4} + 18 a^{2} b c^{5} d^{2} e^{4}\right )} - \frac {2 b \log {\left (\frac {c}{d} + x \right )}}{a^{3} d e^{4}} + \frac {2 b \log {\left (\frac {3 c^{2} x}{d^{2}} + \frac {3 c x^{2}}{d} + x^{3} + \frac {a + b c^{3}}{b d^{3}} \right )}}{3 a^{3} d e^{4}} \]

[In]

integrate(1/(d*e*x+c*e)**4/(a+b*(d*x+c)**3)**2,x)

[Out]

(-a - 2*b*c**3 - 6*b*c**2*d*x - 6*b*c*d**2*x**2 - 2*b*d**3*x**3)/(3*a**3*c**3*d*e**4 + 3*a**2*b*c**6*d*e**4 +
45*a**2*b*c**2*d**5*e**4*x**4 + 18*a**2*b*c*d**6*e**4*x**5 + 3*a**2*b*d**7*e**4*x**6 + x**3*(3*a**3*d**4*e**4
+ 60*a**2*b*c**3*d**4*e**4) + x**2*(9*a**3*c*d**3*e**4 + 45*a**2*b*c**4*d**3*e**4) + x*(9*a**3*c**2*d**2*e**4
+ 18*a**2*b*c**5*d**2*e**4)) - 2*b*log(c/d + x)/(a**3*d*e**4) + 2*b*log(3*c**2*x/d**2 + 3*c*x**2/d + x**3 + (a
 + b*c**3)/(b*d**3))/(3*a**3*d*e**4)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 249 vs. \(2 (86) = 172\).

Time = 0.22 (sec) , antiderivative size = 249, normalized size of antiderivative = 2.71 \[ \int \frac {1}{(c e+d e x)^4 \left (a+b (c+d x)^3\right )^2} \, dx=-\frac {2 \, b d^{3} x^{3} + 6 \, b c d^{2} x^{2} + 6 \, b c^{2} d x + 2 \, b c^{3} + a}{3 \, {\left (a^{2} b d^{7} e^{4} x^{6} + 6 \, a^{2} b c d^{6} e^{4} x^{5} + 15 \, a^{2} b c^{2} d^{5} e^{4} x^{4} + {\left (20 \, a^{2} b c^{3} + a^{3}\right )} d^{4} e^{4} x^{3} + 3 \, {\left (5 \, a^{2} b c^{4} + a^{3} c\right )} d^{3} e^{4} x^{2} + 3 \, {\left (2 \, a^{2} b c^{5} + a^{3} c^{2}\right )} d^{2} e^{4} x + {\left (a^{2} b c^{6} + a^{3} c^{3}\right )} d e^{4}\right )}} + \frac {2 \, b \log \left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right )}{3 \, a^{3} d e^{4}} - \frac {2 \, b \log \left (d x + c\right )}{a^{3} d e^{4}} \]

[In]

integrate(1/(d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="maxima")

[Out]

-1/3*(2*b*d^3*x^3 + 6*b*c*d^2*x^2 + 6*b*c^2*d*x + 2*b*c^3 + a)/(a^2*b*d^7*e^4*x^6 + 6*a^2*b*c*d^6*e^4*x^5 + 15
*a^2*b*c^2*d^5*e^4*x^4 + (20*a^2*b*c^3 + a^3)*d^4*e^4*x^3 + 3*(5*a^2*b*c^4 + a^3*c)*d^3*e^4*x^2 + 3*(2*a^2*b*c
^5 + a^3*c^2)*d^2*e^4*x + (a^2*b*c^6 + a^3*c^3)*d*e^4) + 2/3*b*log(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b
*c^3 + a)/(a^3*d*e^4) - 2*b*log(d*x + c)/(a^3*d*e^4)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.75 \[ \int \frac {1}{(c e+d e x)^4 \left (a+b (c+d x)^3\right )^2} \, dx=\frac {2 \, b \log \left ({\left | b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a \right |}\right )}{3 \, a^{3} d e^{4}} - \frac {2 \, b \log \left ({\left | d x + c \right |}\right )}{a^{3} d e^{4}} - \frac {2 \, a b d^{3} x^{3} + 6 \, a b c d^{2} x^{2} + 6 \, a b c^{2} d x + 2 \, a b c^{3} + a^{2}}{3 \, {\left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right )} {\left (d x + c\right )}^{3} a^{3} d e^{4}} \]

[In]

integrate(1/(d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="giac")

[Out]

2/3*b*log(abs(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a))/(a^3*d*e^4) - 2*b*log(abs(d*x + c))/(a^3*d
*e^4) - 1/3*(2*a*b*d^3*x^3 + 6*a*b*c*d^2*x^2 + 6*a*b*c^2*d*x + 2*a*b*c^3 + a^2)/((b*d^3*x^3 + 3*b*c*d^2*x^2 +
3*b*c^2*d*x + b*c^3 + a)*(d*x + c)^3*a^3*d*e^4)

Mupad [B] (verification not implemented)

Time = 6.37 (sec) , antiderivative size = 250, normalized size of antiderivative = 2.72 \[ \int \frac {1}{(c e+d e x)^4 \left (a+b (c+d x)^3\right )^2} \, dx=\frac {2\,b\,\ln \left (b\,c^3+3\,b\,c^2\,d\,x+3\,b\,c\,d^2\,x^2+b\,d^3\,x^3+a\right )}{3\,a^3\,d\,e^4}-\frac {\frac {2\,b\,c^3+a}{3\,a^2\,d}+\frac {2\,b\,d^2\,x^3}{3\,a^2}+\frac {2\,b\,c^2\,x}{a^2}+\frac {2\,b\,c\,d\,x^2}{a^2}}{x^2\,\left (15\,b\,c^4\,d^2\,e^4+3\,a\,c\,d^2\,e^4\right )+x\,\left (6\,b\,d\,c^5\,e^4+3\,a\,d\,c^2\,e^4\right )+x^3\,\left (20\,b\,c^3\,d^3\,e^4+a\,d^3\,e^4\right )+a\,c^3\,e^4+b\,c^6\,e^4+b\,d^6\,e^4\,x^6+6\,b\,c\,d^5\,e^4\,x^5+15\,b\,c^2\,d^4\,e^4\,x^4}-\frac {2\,b\,\ln \left (c+d\,x\right )}{a^3\,d\,e^4} \]

[In]

int(1/((c*e + d*e*x)^4*(a + b*(c + d*x)^3)^2),x)

[Out]

(2*b*log(a + b*c^3 + b*d^3*x^3 + 3*b*c^2*d*x + 3*b*c*d^2*x^2))/(3*a^3*d*e^4) - ((a + 2*b*c^3)/(3*a^2*d) + (2*b
*d^2*x^3)/(3*a^2) + (2*b*c^2*x)/a^2 + (2*b*c*d*x^2)/a^2)/(x^2*(15*b*c^4*d^2*e^4 + 3*a*c*d^2*e^4) + x*(3*a*c^2*
d*e^4 + 6*b*c^5*d*e^4) + x^3*(a*d^3*e^4 + 20*b*c^3*d^3*e^4) + a*c^3*e^4 + b*c^6*e^4 + b*d^6*e^4*x^6 + 6*b*c*d^
5*e^4*x^5 + 15*b*c^2*d^4*e^4*x^4) - (2*b*log(c + d*x))/(a^3*d*e^4)